If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 15x2 + -16x + 38 = 0 Reorder the terms: 38 + -16x + 15x2 = 0 Solving 38 + -16x + 15x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 15 the coefficient of the squared term: Divide each side by '15'. 2.533333333 + -1.066666667x + x2 = 0 Move the constant term to the right: Add '-2.533333333' to each side of the equation. 2.533333333 + -1.066666667x + -2.533333333 + x2 = 0 + -2.533333333 Reorder the terms: 2.533333333 + -2.533333333 + -1.066666667x + x2 = 0 + -2.533333333 Combine like terms: 2.533333333 + -2.533333333 = 0.000000000 0.000000000 + -1.066666667x + x2 = 0 + -2.533333333 -1.066666667x + x2 = 0 + -2.533333333 Combine like terms: 0 + -2.533333333 = -2.533333333 -1.066666667x + x2 = -2.533333333 The x term is -1.066666667x. Take half its coefficient (-0.5333333335). Square it (0.2844444446) and add it to both sides. Add '0.2844444446' to each side of the equation. -1.066666667x + 0.2844444446 + x2 = -2.533333333 + 0.2844444446 Reorder the terms: 0.2844444446 + -1.066666667x + x2 = -2.533333333 + 0.2844444446 Combine like terms: -2.533333333 + 0.2844444446 = -2.2488888884 0.2844444446 + -1.066666667x + x2 = -2.2488888884 Factor a perfect square on the left side: (x + -0.5333333335)(x + -0.5333333335) = -2.2488888884 Can't calculate square root of the right side. The solution to this equation could not be determined.
| 2x+12=6x-3+4 | | (2x^2+1)-x=6 | | 3x^2+5-2=0 | | 6(m-1)-5(m+3)=-21 | | 4(3)+2y=10 | | 9p+8q=2 | | 4(2)+2y=10 | | 4(-2)+2y=10 | | 9-(4z-3)=4-5z | | y=4-2(3) | | 20+2x=7x | | 5-2x=3x+18 | | x-12+2x+6=6x+78 | | -(6x-(2x+5))=-6-(6(2x-4)-6x) | | x=-18+2x | | 6y-1=9y-4y | | X+9+9=2x | | 7x-(6x+5)= | | -17=2-5(-3) | | 12=2-5(3) | | .35x+.05(2-x)=.10(-53) | | 50(x-1)=37x | | P=(16t+15)-(16t+30) | | 5(2-3x)+3x=-14 | | 9x-8+144=4x | | P=(10x+1)-(4x+3) | | 2a^3-10a^2=48a | | P=10x+1-4x+3 | | 3r^3-6r^2=105r | | 10x-2(x-6)=8x+2 | | P=6+[8x-(5-4x)] | | 8b^3-32b=0 |